- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Alp, Esen E. (1)
-
Claussen, Jonathan C (1)
-
Downing, Julia R (1)
-
Free, Robert (1)
-
Gomes, Carmen L (1)
-
Hersam, Mark C (1)
-
Hersam, Mark C. (1)
-
Joester, Derk (1)
-
Parate, Kshama W (1)
-
Pola, Cícero C (1)
-
Rangnekar, Sonal V (1)
-
Sheets, Robert (1)
-
Smeets, Paul J. M. (1)
-
Stegbauer, Linus (1)
-
Szydłowska, Beata M (1)
-
Tsai, Daphne (1)
-
Wallace, Shay G (1)
-
Wallace, Shay G. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Rapid, inexpensive, and easy-to-use coronavirus disease 2019 (COVID-19) home tests are key tools in addition to vaccines in the world wide fight to eliminate national and local shutdowns. However, currently available tests for SARS-CoV-2, the virus that causes COVID-19, are too expensive, painful, and irritating, or not sufficiently sensitive for routine, accurate home testing. Herein, we employ custom-formulated graphene inks and aerosol jet printing to create a rapid electrochemical immunosensor for direct detection of SARS-CoV-2 spike receptor-binding domain (RBD) in saliva samples acquired noninvasively. This sensor demonstrated limits of detection that are considerably lower than most commercial SARS-CoV-2 antigen tests (22.91 ± 4.72 pg ml −1 for spike RBD and 110.38 ± 9.00 pg ml −1 for spike S1) as well as fast response time (∼30 min), which was facilitated by the functionalization of printed graphene electrodes in a single-step with SARS-CoV-2 polyclonal antibody through the carbodiimide reaction without the need for nanoparticle functionalization or secondary antibody or metallic nanoparticle labels. This immunosensor presents a wide linear sensing range from 1 to 1000 ng ml −1 and does not react with other coexisting influenza viruses such as H1N1 hemagglutinin. By combining high-yield graphene ink synthesis, automated printing, high antigen selectivity, and rapid testing capability, this work offers a promising alternative to current SARS-CoV-2 antigen tests.more » « less
-
Stegbauer, Linus; Smeets, Paul J. M.; Free, Robert; Wallace, Shay G.; Hersam, Mark C.; Alp, Esen E.; Joester, Derk (, Proceedings of the National Academy of Sciences)Engineering structures that bridge between elements with disparate mechanical properties are a significant challenge. Organisms reap synergy by creating complex shapes that are intricately graded. For instance, the wear-resistant cusp of the chiton radula tooth works in concert with progressively softer microarchitectural units as the mollusk grazes on and erodes rock. Herein, we focus on the stylus that connects the ultrahard and stiff tooth head to the flexible radula membrane. Using techniques that are especially suited to probe the rich chemistry of iron at high spatial resolution, in particular synchrotron Mössbauer and X-ray absorption spectroscopy, we find that the upper stylus ofCryptochiton stelleriis in fact a mineralized tissue. Remarkably, the inorganic phase is nano disperse santabarbaraite, an amorphous ferric hydroxyphosphate that has not been observed as a biomineral. The presence of two persistent polyamorphic phases, amorphous ferric phosphate and santabarbaraite, in close proximity, is a unique aspect that demonstrates the level of control over phase transformations inC. stelleridentition. The stylus is a highly graded material in that its mineral content and mechanical properties vary by a factor of 3 to 8 over distances of a few hundred micrometers, seamlessly bridging between the soft radula and the hard tooth head. The use of amorphous phases that are low in iron and high in water content may be key to increasing the specific strength of the stylus. Finally, we show that we can distill these insights into design criteria for inks for additive manufacturing of highly tunable chitosan-based composites.more » « less
An official website of the United States government
